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Abstract

In this paper, new results on using only voltage measurements on supercapacitor terminals for estimation of
accumulated energy are presented. For this purpose, a study based on application of fractional–order models of
supercapacitor charging/discharging circuits is undertaken. Parameter estimates of the models are then used to
assess the amount of the energy accumulated in supercapacitor. The obtained results are compared with energy
determined experimentally by measuring voltage and current on supercapacitor terminals. All the tests are repeated
for various input signal shapes and parameters. Very high consistency between estimated and experimental results
fully confirm suitability of the proposed approach and thus applicability of the fractional calculus to modelling of
supercapacitor energy storage.
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Background
As of today, supercapacitors are the main components
of many devices and systems, e.g., backup power and
electricity recovery systems as well as automotive appli-
cations, hybrid vehicles and many others. The ability to
accumulate charge without any chemical reactions makes
such elements to have hundreds of times higher number
of charge/discharge cycles in comparison to typical bat-
teries [1]. Additionally, high charge/discharge rates make
them effective for applications in energy recovery systems
used for example in transportation or renewable energy
sources [2, 3]. In all these applications, the key param-
eter is the information on the amount of accumulated
energy in the supercapacitor [4, 5]. Unfortunately, the well
known relationship for typical capacitors that allows to
determine the information, that is (1/2)CU2, cannot be
used [6]. The amount of accumulated energy cannot be
determined on the basis of the voltage on capacitor termi-
nals only. The main reason for this is the diffusion process
associated with the charge redistribution [1, 7]. This is
why many researchers have been trying to determine a
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supercapacitor model that would allow estimating the
behavior of a real system. Currently, researchers mainly
adopt the combinations of typical electronic elements,
e.g., RC quadripole or series and parallel combinations of
such elements. However, all of thesemodels assume a rela-
tionship between supercapacitor current and voltage on
its terminal in form of a typical, integer order differential
equation [3–5, 7].
But it turns out that some completely new possi-

bilities for energy estimation in such systems can be
obtained by the application of the fractional calculus
[8, 9]. The noninteger–order differo–integral calculus was
proposed over 300 years ago, but important implementa-
tion issues are related with the advent of computers and
their use in modeling of discrete–time dynamical systems
[10–14]. Application of fractional calculus to the prob-
lem of supercapacitor parameter estimation is not a new
issue. There are many publications in this field [15–25].
The authors perform the task of estimating parameters in
both frequency and time domains [26].
This paper is an extended version of the author’s con-

ference presentation [27], in which a fractional–order
approach has been briefly introduced to estimate energy
accumulated in the supercapacitor.
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Accurate estimation of parameters of the supercapaci-
tors is also of utmost importance in assessing their reli-
ability [28–31]. Permanent degradation processes inside
the supercapacitor can change the equivalent series resis-
tance and capacitance. Thus, accurate determination
of these parameters, based on the proposed method,
also allows to accurately assess the performance of the
capacitor.
This paper starts with some preliminaries related to

fractional–order integration and differentiation. Next, it
presents the parameter estimation method used during
tests and proposes new energy calculation method based
on the fractional calculus. The Results and Discussion
section present the calculated energy for various scenar-
ios and compare them with reference (measured) val-
ues. Conclusions and contributions are summarized in
Conclusions section.

Methods
The use of porous materials in supercapacitors and spe-
cific manner of charge accumulation cause that the tra-
ditional approaches based on integer order derivative
models are not accurate enough. Many researchers have
proposed various solutions in form of combination of typ-
ical RC elements with constant or variable values [4, 7].
But it turns out that definitely better precision can be
obtained using noninteger–order differential calculus for
defining the relationships between supercapacitor’s cur-
rent and voltage [17, 19]. Additionally, such a solutionmay
result in a very simple model structure, while providing
very high accuracy [18].

Fractional Order Differo–Integral Calculus
Fractional order differential calculus has been known
for over 300 years. However, only recent several years
have brought its popularity in modelling of physical phe-
nomena and processes. It is believed that description of
dynamics with a derivative or integral of noninteger–
order can be one of the most effective methods for mod-
elling of real properties of many complex phenomena and
industrial processes, especially based on novel materials
and technologies [10, 12, 13, 32–34].
Noninteger–order differential or integral calculus is a

generalization of classical calculus to order α that belongs
to the set of real numbers R. The differo–integral opera-
tor of order α ∈ R of function f (t) on the range [ a, t] can
be written as follows

aDα
t f (t) =

⎧
⎨

⎩

dα f(t)
dtα for α > 0
f (t) for α = 0
∫ t
a f (τ )dτα for α < 0,

(1)

assuming that the function f (t) is multiple times differ-
entiable and integrable. As for the operator (1), there are
many definitions of its realization. Such definitions differ

in properties and areas of application. The most popu-
lar are the Riemann–Liouville, Caputo and Grünwald–
Letnikov (GL) definitions [34]. The latter will be used in
this paper in the form

aDα
t f (t) = lim

h→0

1
hα

[ t
h
]

∑

j=0
(−1)j

(
α

j

)

f (t − jh), (2)

where the binomial
(
α
j
)
is defined as follows

(
α

j

)

=
{
1 for j = 0
α(α−1)...(α−j+1)

j! for j > 0. (3)

In order to obtain a fractional model at discrete
moments of time, the GL definition in a discrete form is
simplified as

�α
h f (t) = 1

hα

t∑

j=0
(−1)j

(
α

j

)

f (t − j). (4)

There are several discretization schemes for the GL
Eq. (4). The most popular ones include backward differ-
ences (Euler), trapezoidal (Tustin), and Al Alaoui oper-
ators. Using Euler’s method, the fractional derivative at
discrete time moments k can be presented as

�α
h f (k) = 1

hα

k∑

j=0
(−1)j

(
α

j

)

f (k − j), k = 0, 1, . . . . (5)

The infinite sum of previous samples must be in real
systems limited to a finite value due to the limited mem-
ory and limited calculation time. Now, the truncated or
finite–length discrete–time approximation of GL is

�α f (k) = 1
hα

L∑

j=0
(−1)j

(
α

j

)

f (k − j), k = 0, 1, . . . , (6)

where f (l) = 0 for l < 0 and L is the length of the
model (6) [23]. Reducing the number of samples results in
decreased calculation accuracy. This is important for sys-
tems operating in a continuous time. Some other kinds of
solution are algorithms approximating fractional differo–
integrals with integer order models. An example can be
Oustaloup recursive filters [35]. Another effective finite–
length model is the FFLD, being a combination of the
truncated model (6) and a Laguarre–based difference
[24, 36, 37].
All results of identification as well as energy measure-

ments are obtained based on all samples in the (long)
observation window L, i.e., with maximum accuracy.
Figure 1 presents the step responses of integration and dif-
ferentiation obtained based on (6), for k = 0, 1, . . . , L and
for various values of integration/differentiation order α.
Assuming different values of order α, one can more
accurately model different physical processes, especially
diffusion ones.
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a

b

Fig. 1 Step responses for integrating (a) and differentiating (b)
models with various orders α

Parameter Estimation for Fractional Model
The results of all energy measurements and identification
procedures presented in this paper were obtained for a
supercapacitor charged from a controlled voltage source.
In such a system, the supercapacitor current iC(t) must
be limited by a resistor R connected in series with the
supercapacitor C (Fig. 2). Estimation of all supercapacitor
parameters is performed based on quadripole response
uC(t) to voltage step u(t) at its input. Choosing the appro-
priate value of derivative order α allows to account for a
supercapacitor model of the physical phenomena related
to diffusion processes associated with the charge redis-
tribution during the charging and discharging processes.
The parallel resistor rP additionally enables modelling of
the leakage current. Using the fractional differential calcu-
lus for modeling supercapacitors, the model structure can
be of low complexity. For supercapacitor charged from the
voltage source, a model consists of only two elements, i.e.
a simple RC quadripole (Fig. 2a). For low capacities, the

a

b

c

Fig. 2 Supercapacitor RC models, base model (a), expanded with a
series resistance (b), and with additional parallel resistance (c)

series resistance rS is of importance (Fig. 2b), while the
leakage current IL may be additionally represented by the
parallel resistance rP (Fig. 2c). Using the fractional order
calculus to model the supercapacitor, the relation between
the voltage on capacitor terminals and its current can be
expressed as follows

iC(t) = Cα

dαuC(t)
dtα

, (7)

where the operator dα/dtα means a differentiation oper-
ator of order α and the SI unit of Cα is [ F/sec1−α]. The
basic supercapacitor configuration presented in Fig. 2a
can be treated as a first–order inertial system and can be
represented by the fractional transfer function

G(sα) = UC(s)
U(s)

= 1
Tsα + 1

, (8)
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where T = RCα . Taking into account the series resistance
rS (Fig. 2b), the circuit is treated as phase–delaying cor-
rection system with the transfer function (compare [24])

G(sα) = 1
T1sα + 1

+ T2sα

T1sα + 1
, (9)

where T1 = Cα(R + rS) and T2 = rSCα . Additionally,
allowing for the parallel resistor rP representing the leak-
age current IL (Fig. 2c), the system transfer function can
be expressed as

G(sα) = T2sα + 1
T1sα + K

, (10)

where K = R/rP + 1, T1 = C(Rrs/rP + R + rS) and T2 =
rSC. In the time domain, Eq. (10) can be presented as

dαuC(t)
dtα

= 1
T1

(u(t) − KuC(t)) + T2
T1

dαu(t)
dtα

. (11)

The time response of the model defined by (11) was
obtained by transforming it into the form presented
graphically in Fig. 3, where integration and differentiation
operations are of fractional order α. This model was used
during the process of estimation of supercapacitor param-
eters. The tested supercapacitor was identified using the
system presented in Fig. 4a. The control procedure of the
entire system was developed using the Matlab/Simulink
software with xPC Toolbox. The system consisted of a
desktop PC (xPC Target) with the installed measurement
card NI-DAQ and master computer (xPC Host). The
computers were interconnected through the Ethernet net-
work. The supercapacitor was charged and discharged by
(voltage–controlled) voltage source (Fig. 4b) of current

efficiency up to ± 3A. The measurement system was
operated with the sampling frequency of 100Hz, while
all the measurements and analog control signals were
processed with 16–bit resolution [25].
The main method for determining the dynamic

properties of a system is based on the analysis of
the step response [38]. In relation to the system
model, this method allows estimation of its parame-
ters. For this study, the step signal with various volt-
ages (0.5/1.0/1.5/2.0/2.7V) and constant duration (500 s)
have been used (see Fig. 5 and Table 2). On the other
hand, one of the typical applications of supercapacitors is
the accumulation or delivery of energy into the power sys-
tems. In this case, the voltage change rate is rather small.
To simulate it, the 400mVpp and 0.03 rad/s signal with 2V
offset was used (Fig. 6). Additionally in order to examine
the influence of the voltage and frequency changes on esti-
mated parameters, various values of the latter were used
(see Table 3).
There are several methods for estimation of model

parameters. The main aim of the identification procedure
in the time domain applied in this work was to esti-
mate the vector of unknown parameters θ =[α,Cα , rS, rP]
of fractional model presented by (11). The least squares
method was used to minimize the initial error. An opti-
mization criterion involved minimization of the standard
error ‖ε(k)‖22, where

ε(k) = uC(k) − ûC(k), (12)

where uC(k) is the output voltage measured from the
tested system at moment k, while ûC(k) is the output volt-
age from the considered model for the input signal u(k).
The identification problem is now reduced to finding a

Fig. 3Matlab structure of supercapacitor model in time–domain
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a

b

Fig. 4 Structure of measurement system (a) and supercapacitor charging/discharging scheme (b)

parameter vector θ ∈ �ad that wouldminimize the square
criterion J in such a manner that

min
θ∈�ad

{

J =
N∑

0
ε(k)Tε(k)

}

, (13)

where �ad denotes the set of admissible parameter val-
ues and N means the simulation time. There are many
optimisation algorithms that can be used to solve the
problem (13). The results presented in this paper were
obtained by implementing the genetic algorithm in the
Matlab environment.

Energy Calculation
A change in the energy stored in the supercapacitor
depends on the power supplied to the capacitor per unit
of time and can be described as follows

dE(t) = P(t)dt. (14)

By expressing the power supplied to the capacitor as a
product of the current and voltage on capacitor terminals,
the change in energy at given time t can be expressed as

dE(t) = uC(t)iC(t)dt. (15)

The total energy during the time interval [t1, t2] can be
obtained by integrating the energy changes over that time

Etot =
∫ t2

t1
dE(t) =

∫ t2

t1
uC(t)iC(t)dt. (16)

Accounting for Eq. (7), the total energy storage can be
determined as

Etot = Cα

∫ t2

t1
uC(t)

dαuC(t)
dtα

dt. (17)

Assuming t1 = 0 and Et1 = 0, the total energy stored in
the supercapacitor during the time interval [ 0, t] is

E(t) = Cα

∫ t

0
uC(τ )

dαuC(τ )

dτα
dτ . (18)

Note that for α = 1 Eq. (18) can be reduced to the
classical one

E(t) = 1
2
CuC(t)2. (19)

Results and Discussion
Initially, the procedure for estimating the parameter vec-
tor of the supercapacitor model using the fractional calcu-
lus was performed. The estimation was performed based
on the system presented in Fig. 2c, generating a voltage
step or sinusoidal wave at its input. The model responses
were calculated based on (11). The results obtained by the
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a

b

Fig. 5 Step responses for tested supercapacitor and its fractional
model (a) and the model response error (b)

two identification procedures are very similar, especially
in the case of fractional capacitance Cα and the fractional
order α (see Table 1). Some differences in the estimates
of series resistance rS may be a result of its dependence
on frequency. The step signal consists of many high fre-
quency harmonics while the sinusoidal wave only one –
the 0.03 rad/s. The presented results were obtained for
the commercial supercapacitor Samwha Green–Cap
EDLC(DB), rated as 2.7V with 100 F nominal capacitance
and 8m� maximum equivalent series resistance (rS) at
1 kHz.
Figures 5a and 6a show the measured supercapacitor

voltage and the calculated model responses, for step and
sinusoidal signals, respectively, while Figs. 5b and 6b show
the model response error.
All obtained results show high consistency between

model responses and real measurements despite the fact
that relatively simple models were proposed. Some dis-
crepancies may result from the fact that model parame-
ters should be estimated in the system of supercapacitor
charged and discharged using the current source [25].

a

b

Fig. 6 Sinusoidal wave responses for tested supercapacitor and its
fractional model (a) and the model response error (b)

Also, very high estimates of rP may suggest that this resis-
tance could be excluded from the supercapacitor model
shown in Fig. 2c. Those very high estimates and their high
discrepancies for different inputs indicate that the test sig-
nals used to estimate this parameter are not proper. The
model (10) was used as the most general form. However,
in order to accurately determine all its parameters, it was
necessary to use other procedures and test signals. The
value of rP characterizes the leakage current IL and should
be determined using the constant voltage signal, but for a
very long time – of order of several dozen hours.

Table 1 Results of identification of RC quadripole for nominal
parameters: Cn = 100 F, Un = 2.7 V and R = 0.995�

Parameter Step response Sinusoidal response

Cα Fsα−1 63.80 64.38

rS m� 3.80 0.86

rP � 2.19 × 1049 3.86 × 1036

α − 0.9157 0.9196

Note: Cα – fractional capacitance
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Table 2 Estimates of parameter vector θ =[α, Cα , rS , rP] for
various voltage steps excitations, Cn = 100 F, Un = 2.7 V and
R = 0.985�)

Ustep α Cα rS rP
[ V] – Fsα−1 m� �

0.5 -0.9594 84.9 17.7 1.28e+16

1.0 -0.9561 84.9 37.4 1.19e+21

1.5 -0.9398 79.5 16.1 1.46e+16

2.0 -0.9006 68.4 12.9 6.20e+17

2.7 -0.8788 63.8 9.4 1.45e+14

Although the main goal of the study was to mea-
sure energy, various excitation conditions largely affected
all the parameter estimates (see Table 2). For instance,
the increase of the voltage step amplitude signifi-
cantly changed the fractional integration order, as the
result of increasing effect of the diffusion phenom-
ena inside the supercapacitor. It can also be seen from
Table 2 that the supercapacitor is quite nonlinear. As
a result of the integration order changes, the variation
of the fractional capacity is also observed. This also
applies to sinusoidal excitation. The values of estimated
parameters—especially α and Cα—depend on the ampli-
tude and frequency (see Table 3). For low frequencies, the
amplitude value is important, while for higher frequen-
cies the supercapacitor behaves like being excited with a
constant voltage.

Table 3 Estimates of parameter vector θ = [α, Cα , rS , rP] for
sinusoidal excitation with various frequencies and amplitudes,
Cn = 100 F, Un = 2.7 V and R = 0.985�, Uoffset = 2.0 V)

Frequency

0.01 rad/s 0.03 rad/s 0.05 rad/s

Amplitude 0.10 V α/− -0.9634 -0.8870 -0.9616

Cα/Fsα−1 81.7 64.9 82.7

rS/m� 34.3 2.2 18.6

rP/� 4.6e+18 4.4e+21 6.6e+17

0.25 V α/− -0.9501 -0.9287 -0.9524

Cα/Fsα−1 76.8 74.1 78.6

rS/m� 110 22.6 27.8

rP/� 7.4e+14 1.9e+19 3.7e+19

0.50 V α/− -0.9476 -0.9433 -0.9568

Cα/Fsα−1 75.8 75.2 78.3

rS/m� 46.8 17.5 26.3

rP/� 4.1e+18 1.1e+20 1.1e+19

0.70 V α/− -0.8938 -0.8972 -0.9566

Cα/Fsα−1 63.12 64.17 78.7

rS/m� 23.8 3.3 23.1

rP/� 1.7e+18 1.4e+22 2.1e+24

Energy Calculation
Figures 7a and 8a show measured values of the voltage
and current of the supercapacitor for the configuration as
presented in Fig. 4b. These values were used for calcula-
tion of the total energy stored in the capacitor (marked
as E1 in Figs. 7b and 8b) according to (16). Just as for
parameter identification processes, the calculations were
conducted both for voltage step and sinusoidal wave at
the system input. The energy calculated in such a man-
ner for each time t was compared with energy calculated
based on the voltage and capacity in accordance with (19)
(marked as E3 in Figs. 7b and 8b) and energy calculated
with fractional–order calculus (marked as E2 in Figs. 7b
and 8b) according to (18). For Eq. (19), a nominal value of
supercapacitor was adopted (Cn), while in (18) the value
obtained from the estimation process presented in Table 1
was used. Figure 7b shows results of measurements and
energy calculations for voltage step, while Fig. 8b shows
this same quantities for sinusoidal wave. Similar calcula-
tions were made for different voltage steps and sinusoidal
excitations. Figure 9a, b shows an example of measured

a

b

Fig. 7 Step responses for supercapacitor voltage and current (a) and
calculated energy values (b)
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a

b

Fig. 8 Sinusoidal responses for supercapacitor voltage and current (a)
and calculated energy values (b)

and calculated energies for two voltage steps of 0.5 V and
2.7V, respectively. Figure 10 shows the energy changes
for a sinusoidal signal with the frequency of 0.03 rad/sec
and different amplitudes of 0.1/0.25/0.5 and 0.7V. It can
be seen that the differences in the determined energy val-
ues correspond to differences in the estimated values of
the fractional order α. The greater the difference from the
value − 1, the greater is the difference in the calculated
energies.

Discussion
The use of a porous material electrodes in supercapacitors
in form of active carbon isolated by a very thin separa-
tor and use of charge accumulation mechanisms as so–
called double layer, gives an enormous increase in their
capacity. However, application of new materials and new
design solutions result in the fact that traditional mathe-
matical calculations in form of integer–order derivatives
and integrals appear inaccurate. The conducted measure-
ments and calculations prove the fractional–order nature
of supercapacitors. By correct estimation of noninteger

a

b

Fig. 9 Energy amounts calculated for step excitations of 0.5 V (a) and
2.7 V (b)

order α of derivative/integral, one can precisely model
phenomena and processes occurring inside the superca-
pacitor using simple mathematical models.
Taking into account the real value of the accumulated

energy determined by (16), the integer–order model with
nominal parameters (19) under–estimates the amount of
energy, while the fractional model (18) indicates almost
the same value.
The performed tests and measurements were related

to charging and discharging of the supercapacitor by
a voltage source. Under industrial conditions, super-
capacitors are usually charged and discharged by cur-
rent sources. This can change the nature of the system
because the capacitor is no longer an inertial system but
becomes a typical integrating one. However, the measure-
ments conducted by author also indicate the occurrence
of diffusion processes in such cases. Anyway, useful-
ness of the Gründwald–Letnikov derivative/integral is
confirmed here. Another issue is related to the imple-
mentation of the GL differo–integral operator as, e.g.,
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a

b

c

d

Fig. 10 Energy amounts calculated for sinusoidal excitations with frequency 0.03 rad/s and amplitudes 0.1 V (a), 0.25 V (b), 0.5 V (c), and 0.7 V (d)

the finite or truncated GL difference (6), which may
be computationally burdensome. In future research, we
will compare the Oustaloup [35] and FFLD [24, 36, 37]
approximators to effectively solve the implementation
issue.
The amount of energy storage in supercapacitor cal-

culated only on the measured value of supercapacitor
terminal voltage and using model (19) is not appropriate.
The model (19) is only valid if the capacitor current is
characterized by the integer order derivative of the capac-
itor voltage (iC(t) = duC(t)/dt). This is not true for
supercapacitor as a consequence of its construction and
used special materials. However, the same problem occurs
with very large supercapacitors charged by current source.
There are also quite new element as super-batteries. In
all these applications, the current changes are not char-
acterized by the integer-order derivative of the terminal
voltage as a consequence of the specific properties of these
elements.

Conclusions
In this paper, a new approach to estimation of an amount
of energy accumulated in supercapacitors has been pre-
sented. The analysis has been conducted taking advantage
of certain unique properties of fractional–order models.
It has been shown that application of such sophisticated
modeling leads to very accurate results, which can be
obtained even though the models themselves are not of
high complexity. This is due to a natural ability of non-
integer order dynamics to model diffusion processes, just
like charge redistribution in supercapacitors. The results
of this paper have confirmed the fractional nature of
supercapacitors.
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